Global and Local Gauge Symmetry in the "Tetrahedron Model": Part I

John A. Gowan
email:
jag8@cornell.edu 
johngowan@earthlink.net


home page (page 1)
home page (page 2)
E-Book

 
(Revised June, 2014)

PART I

Abstract

The phenomenon of "local gauge symmetry" is a ubiquitous and fundamentally important process in nature, essentially describing the normal activity of the field vectors of all four forces of physics. Although formidable in name, it is simple in concept: it comprises the process/mechanism of changing or protecting any conserved parameter of a single elementary particle. "Local gauge symmetry" is a necessary part of our world for two basic and interrelated reasons: 1) our universe is asymmetric in that it is formed of matter only, lacking a balancing antimatter counterpart; 2) our universe consists of an interacting mixture of a) free electromagnetic energy (massless light) in absolute "intrinsic" spatial motion at "velocity c", but with intrinsic rest in time; and b) bound electromagnetic energy (massive particles) at intrinsic rest in space but with an intrinsic temporal motion which is the metric equivalent of "velocity c". "Local gauge symmetry" activities in the short-range nuclear forces (strong, weak) are consequent upon 1); in the long-range spacetime forces (electromagnetism, gravity), such phenomena are consequent upon 2).

The bound forms (massive particles) of electromagnetic energy carry various conserved attributes (charge, spin, etc.) which are the symmetry debts of the free energy from which such particles are made: the charges of matter are the symmetry debts of light (Noether's Theorem). Conserving, protecting, and maintaining these charges in their original quantity and quality is a major function of the field vectors of the four forces and the "local gauge symmetry currents" they create, all to the end that the original symmetry and energy of the light or free electromagnetic radiation which initiated the universe will be completely conserved. Other issues of energy, entropy, and causality conservation are addressed by the metric properties of the long-range forces (such as the "Lorentz invariance" of Special Relativity) - including, in the case of gravity, the "non-local" distributional symmetry of light's energy, as well as light's spatial entropy drive, both produced by light's intrinsic motion.


Related Papers:

Global-Local Gauge Symmetries and the "Tetrahedron Model" (part I)
Global-Local Gauge Symmetries and the "Tetrahedron Model" (part II)
Global-Local Gauge Symmetries and the "Tetrahedron Model" (Postscript)
Global-Local Gauge Symmetries in Gravitation
Global-Local Gauge Symmetries in the Weak Force
Global-Local Gauge Symmetries and the "Tetrahedron Model" (part IV)
Global-Local Gauge Symmetries and the "Tetrahedron Model" (part V)

(Because I interpret the topic of "global vs local gauge symmetry" entirely from the perspective of charge and symmetry conservation - which is consistent with the overview of this website but may confuse some readers - several more orthodox explanations of this subject (in non-math terms) are suggested below):
"Most Wanted Particle", Jon Butterworth 2014, The Experiment, LLC: pages 96 - 99.
"Higgs", Jim Baggott 2012, Oxford Univ. Press, pages 23 - 37.
"The Moment of Creation", James S. Trefil 1983, Collier, Macmillan.

PART I

Preface


1) Noether's Theorem requires the conservation of light's symmetry no less than light's energy.
2) The charges (and spin) of matter are the symmetry debts of light.
3) Charge (and spin) conservation is a temporal, material form of symmetry conservation.
4) Maintaining and/or paying (conserving) light's symmetry debt is a major functional role and rationale of the 4 forces of physics (field vectors).
5) Charge invariance in time and space (in the service of symmetry conservation) is the key to understanding the local action of the forces ("local gauge symmetry").
6) The field vectors of the forces act via "local gauge symmetry currents" which maintain charge invariance despite relative motions or other variations in local conditions - serving charge and symmetry conservation, and in the case of gravity, serving energy, symmetry, entropy, and causality conservation (via "Lorentz Invariance", and because gravity creates time).
7) Gravity (as gauged by the universal gravitational constant "big G") transforms the global spatial metric of absolute motion and massless light, as gauged by the universal electromagnetic constant "c", into a local spacetime metric accommodating relative motion and massive matter, as well as light. (The local gravitational metric is further characterized by "little g".) (Gravity creates time by the annihilation and conversion of space to its temporal metric equivalent.)
8) Gravity pays the entropy-"interest" on matter's symmetry debt, creating time by the annihilation of metrically equivalent space, decelerating cosmic expansion in consequence. Conversely, the gravitational conversion of bound to free energy (as in stars, supernovas, quasars, and via Hawking's "quantum radiance" of black holes), pays the energy-"principle" on all symmetry debts, restoring (and hence to all appearances "accelerating") the original cosmic expansion. The radiance of our Sun and the stars announces a completed "circuit" of symmetry conservation. (See: "Currents of Entropy and Symmetry)".

"Local vs global gauge symmetry" is a technical subject which, in its full formal application, is far beyond this author's level of mathematical ability. Nevertheless, we very much need to understand some important physical concepts addressed by this topic, so I will define below my own usage of this term and concept, which may be at some variance (hopefully small) with the way these ideas are presented in the textbooks.

As I understand and use these terms and concepts in the papers on this website, "global gauge symmetry" refers to a symmetry which is universally expressed, and which is not affected by changes in the absolute magnitude of its significant variable - provided these changes are universally applied. The usual example given is the voltage of a closed electrical system. Examples I use are the value of "velocity c" (the entropy and symmetry gauge of light), and the magnitude of various charges - electric, color, and flavor. If the magnitudes of "velocity c" or electric charge were different from what they are, we wouldn't experience the difference, provided the difference was universal. Even moderate changes in the value of the universal gravitational constant ("big G") could not be detected in free fall or orbit (if external observations are excluded). It is only when the values are locally different from one place to another that we become aware of such changes - as an electrical shock or current, or as the "weight" we feel in our normal (on Earth's surface) gravitational relationship.

References: